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Abstract

Recent work has explored diffusion language
models (DLMs) as an alternative to autoregres-
sive (AR) generation for reasoning tasks, yet lit-
tle is known about the faithfulness of their inter-
mediate reasoning trajectories. This study intro-
duces a preliminary framework for measuring
Diffusion Chain-of-Thought (DoT) faithfulness
and provides an initial empirical analysis using
the LLaDA-8B model and its accelerated vari-
ant, dLLM-Cache. Using trajectory-level linear
probes on the GSM8K benchmark, we examine
how answer-relevant information emerges and
evolves across diffusion steps, and how caching
affects this process. Results show that correct-
ness information appears early in the diffusion
trajectory, accumulates over time, and remains
largely preserved under acceleration with only
modest degradation. While limited to a single
acceleration method and probing-based eval-
uation, these findings provide early evidence
that DLM reasoning dynamics can retain causal
coherence under efficiency-oriented modifica-
tions. Future work will extend this framework
with further diagnostics and acceleration meth-
ods to build a more complete understanding of
faithfulness in diffusion-based reasoning.

1 Introduction

Chain-of-thought (CoT) prompting has become
standard practice during evaluation and deployment
of AR large language models (LLMs). Prior work
has shown that both prompting the LLM to gen-
erate intermediate reasoning steps and explicitly
training it to do so lead to performance improve-
ments (Chen et al., 2025). However, a growing
body of work demonstrates these explanations are
often unfaithful, meaning the final answer is not
causally mediated by the produced CoT (Jacovi
and Goldberg, 2020; Lanham et al., 2023; Paul
et al., 2024). This makes CoTs a poor basis for
interpretability and undermines trust, as users may
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assume the rationale reflects the true internal com-
putation.

DLMs extend diffusion-based generative model-
ing to discrete text (Li et al., 2022; Nie et al., 2025;
Dong et al., 2023). Rather than sampling tokens
left-to-right, DLMs iteratively denoise a masked se-
quence to produce tokens (we note there are many
other approaches to diffusion language modeling).
This sampling paradigm naturally exposes a rich
state trajectory over time, including intermediate
partial sequences that can be interpreted as “latent
thoughts.” Recent work has begun to exploit this
structure for reasoning by diffusing over rationales
before answers (Ye et al., 2024a) or by monitor-
ing early answer convergence during the denoising
process (Li et al., 2025). Yet it remains unclear
whether the DoT explanations produced by DLMs
are faithful.

At the same time, DLMs are computationally ex-
pensive due to repeated forward passes at each dif-
fusion step. This has motivated a line of train-free
acceleration techniques designed specifically for
DLMs, including cross-step caching of representa-
tions (Liu et al., 2025b; et al., 2025), DLM-targeted
post-training quantization (Xu and Yang, 2025),
and step-adaptive early stopping (Li et al., 2025).
While these methods report substantial speed and
memory gains, they are evaluated almost exclu-
sively on standard metrics (accuracy, perplexity,
BLEU, etc.). This leaves open whether they alter
the causal dependence between reasoning traces
and answers. Do such accelerations preserve or
erode the faithfulness of DoTs?

This work takes a first step toward answering this
question by studying DoT faithfulness and its sen-
sitivity to train-free acceleration methods. Building
on existing causal and intervention-based notions
of faithfulness developed for AR LLMs (Jacovi and
Goldberg, 2020; Lanham et al., 2023; Paul et al.,
2024), we adapt these ideas to the diffusion setting.
In particular, reasoning unfolds across tokens and
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Figure 1: Overview of reasoning dynamics in diffusion language models. PCA projections of hidden-state trajectories
from the baseline LLaDA-8B model show that correct (green) and incorrect (red) examples gradually diverge as
denoising progresses, illustrating how answer-relevant structure emerges over diffusion time. This pattern underlies
analysis of DoT faithfulness and forms the basis for measuring faithfulness throughout a diffusion trajectory.

the diffusion time dimension, providing an addi-
tional axis for exploration. We empirically compare
an uncompressed AR and DLM baseline to their
accelerated variants on reasoning benchmarks, ana-
lyzing how each acceleration method affects their
reasoning traces. Our key contributions are: (1)
a conceptual framework for DoT faithfulness that
connects AR causal definitions to the iterative de-
noising process; and (2) the first, to our knowledge,
empirical study of the faithfulness of DoT.

2 Related Works

Faithfulness and CoT in AR LLMs While
specific definitions vary, a faithful CoT is one
where the model’s stated reasoning truly reflects
the model’s internal decision process, rather than
merely supplying a plausible answer. Jacovi and
Goldberg’s (2020) work provides clear guidelines
on distinguishing plausibility from faithfulness. A
faithful CoT is not only plausible, but causally re-
sponsible for the model’s final prediction. Lanham
et al.’s (2023) work formalizes faithfulness by inter-
vening on intermediate reasoning steps and exam-
ining the change in final model answer. Through in-
terventions such as early-answering, mistake inject-
ing, and more, they find that while CoTs boost ac-
curacy, they are often unfaithful. However, DLMs
have shown robustness to errors in CoTs (Ye et al.,
2024b; Cetin et al., 2025), which may introduce a
confounding factor in such interventions. That is,
did a DoT recover from the injected mistake in or-
der to still predict the correct response? Rather than
intervening on the intermediate reasoning traces,

other approaches such as Turpin et al. (2023), make
counterfactual edits to the input prompts only and
find AR LLMs present plausible but consistently
unfaithful CoTs.

Still other works attempt to attribute LLMs’ in-
ternal states to portions of the CoT. That is, if
the model reasons step-by-step, then intermediate
steps should strongly influence the next steps and
the final answer. Recent work by (Helbling et al.,
2025) presents a train-free method of obtaining
high-quality saliency maps in Diffusion Transform-
ers for image generation, a method that shows plau-
sibility in an application to DLMs. While these as-
sist in understanding the model’s internal workings,
they demonstrate correlation rather than causation.

DLMs and reasoning Recent work treats DLM
denoising trajectories as explicit reasoning pro-
cesses. Ye et al. (2024b) propose Diffusion of
Thoughts, which iteratively refines intermediate
“thought” states over diffusion steps and decodes
the final state to text, naturally supporting self-
correction and a compute—accuracy trade-off via
the diffusion schedule. Huang et al. (2025) intro-
duce DCoLT, which frames reverse-diffusion steps
as latent “thinking actions” and optimizes the full
trajectory with outcome-based reinforcement learn-
ing, leveraging bidirectional, non-causal attention
and unconstrained intermediate states to encour-
age lateral exploration. Kang et al. (2025) propose
LaDiR, a latent diffusion model that compresses
reasoning into VAE “blocks of thought” and re-
fines them with blockwise bidirectional attention,



enabling parallel exploration of candidate trajec-
tories and adaptive test-time compute. Shao et al.
(2025) present Diffuse Thinking, a hybrid frame-
work where a DLM proposes diverse intermediate
thoughts in parallel and an AR LLM selects among
them, using diffusion primarily as an efficient gen-
erator of candidate reasoning paths.

More broadly, this line of work connects to la-
tent chain-of-thought and diffusion-based reason-
ing, where multi-step inference is carried out in hid-
den representations rather than explicit rationales
(He et al., 2024; Chen et al., 2025). Across these
approaches, trajectories are treated as structured
objects to refine, optimize, or diversify. However,
evaluations largely emphasize answer accuracy, di-
versity, or qualitative interpretability, leaving open
whether intermediate diffusion-time “thoughts” are
causally necessary for the final prediction, and how
inference-time modifications (e.g., caching, quanti-
zation, early stopping) alter that dependence. We
address this gap by analyzing DLM trajectories
through a causal lens and measuring how train-free
accelerations modulate the relationship between
diffusion-time states and final outputs.

Table 1: Model performance and efficiency on GSMS8K.
We compare the baseline model (LLaDA-8B) against
dLLM-Cache. Accuracy is measured with exact
matches, and latency is averaged over 500 samples.

Model Accuracy Latency (Speedup)
LLaDA-8B 39.70% 6.31s (1.00x)
dLLM-Cache  36.80% 3.54s (1.78 )

Train-free acceleration for diffusion LMs and
LLMs Caching-based, train-free acceleration has
recently emerged as a powerful technique for dif-
fusion models in vision, particularly DiT-style ar-
chitectures, delivering large speedups with min-
imal quality degradation (Aggarwal et al., 2025;
Liu et al., 2025a; Wimbauer et al., 2023). These
ideas have since been adopted in diffusion language
models, where methods such as dLLM-Cache (Liu
et al., 2025b) and dKV-Cache (et al., 2025) reuse
or partially update representations across diffusion
steps to reduce redundant computation. However,
these methods currently lack a clear analysis of how
caching alters the underlying reasoning process.
Similarly, Post-Training Quantization (PTQ),
now commonplace for AR LLMs (Frantar et al.,
2022; Yao et al., 2022), struggles with DLMs,
where iterative denoising amplifies quantization
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Figure 2: Classification probe accuracy over diffusion
steps. The probe predicts answer correctness from mean-
pooled hidden states. Both models show increasing ac-
curacy in later steps, with the baseline achieving higher
peak accuracy (83.5% vs 76.0% at step 63).

noise (Xu and Yang, 2025). Although tailored
quantizers (Xu and Yang, 2025) and step-adaptive
methods like Prophet (Li et al., 2025) have emerged
to reduce costs, their effect on the relationship be-
tween DoTs and final answers remains unknown.
Our work aims to evaluate these acceleration tech-
niques through the lens of faithfulness.

3 Method

We investigate the faithfulness of DoTs and how
train-free acceleration techniques affect this prop-
erty in three stages: (1) formalizing faithfulness in
DLMs, (2) developing trajectory-level diagnostics
to measure it, and (3) applying these diagnostics to
uncompressed and accelerated DLMs.

Faithfulness in Diffusion Language Models We
define a DLM as faithful if its intermediate denois-
ing states encode the causal information necessary
for producing the final answer, and if perturbing
these states produces predictable, semantically co-
herent changes in the output. In other words, a DoT
is faithful if and only if its intermediate trajectory
lies on the model’s minimal causal path from input
to prediction.

Unlike AR models, DLMs denoise bidirection-
ally and can overwrite errors in later steps. This
property complicates the use of standard CoT inter-
ventions such as mistake injection or token deletion
(Lanham et al., 2023). Faithfulness in DLMs there-
fore requires examining the temporal evolution of
latent representations rather than the surface text
alone. Effective metrics must account for redun-
dancy and smoothing over diffusion time, such that
robustness is not mistaken for causal irrelevance.



Table 2: Summary of probe performance metrics. Clas-
sification accuracy measures the percentage of correctly
classified answer predictions by the probe; R? and
RMSE correspond to regression probes directly pre-
dicting numeric answers.

Model Classification Accuracy R?2 Score
Mean Best (Step) Mean Best (Step)

LLaDA-8B 68.45%  83.50% (63) -45.25 -16.67% (1)

dLLM-Cache 66.84%  76.00% (63) -38.24 -15.19% (1)

Trajectory-Level Diagnostics We propose two
complementary diagnostics tailored to the diffusion
setting, and include experiments utilizing the first,
leaving the second to future work.

(a) Linear Probing. For each diffusion timestep
t, we train lightweight linear probes to predict the
model’s final answer from the intermediate latent
state x;. The accuracy of these probes indicates
how early answer-relevant information emerges in
the trajectory. If early timesteps already yield near-
oracle predictions—or if such information appears
only in the final steps—this suggests that the visible
DoT does not reflect a genuine reasoning sequence.
Instead, it may represent early answer storage fol-
lowed by decorative denoising. Probe-sharpness
curves over time thus reveal whether reasoning un-
folds iteratively or is merely post hoc.

(b) Counterfactual Perturbation. We inject tar-
geted semantic perturbations into intermediate la-
tent states ¢, such as flipping a logical predicate
or altering a partial computation. We then measure
whether these changes (1) persist and influence the
final output or (2) are overwritten by later denois-
ing steps. High counterfactual sensitivity implies
that x; is causally upstream of the output, whereas
insensitivity suggests that the trajectory segment is
non-causal or redundant.

Comparing Uncompressed and Accelerated
DLMs In this study, we focus our empirical anal-
ysis on the baseline DLM and its accelerated vari-
ant employing cross-step caching (dLLM-Cache).
Caching reuses intermediate representations across
diffusion steps to reduce redundant computation,
potentially skipping reasoning-relevant updates.
This setting allows us to examine whether such
acceleration alters the causal relationship between
intermediate denoising states and final outputs.
For both models, we record the full tra-
jectory {x;}L, and apply our primary
diagnostic—trajectory-level probing—to assess
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Figure 3: Regression probe R? scores over diffusion
steps. Negative R? indicates poor linear predictability
of numeric answers. Both models show negative R?
throughout, with dLLM-Cache achieving slightly better
(less negative) scores, particularly in early steps.

the emergence and persistence of answer-relevant
information over diffusion time. These initial
results establish a foundation for understanding
how caching affects reasoning dynamics and
faithfulness.

While the present work centers on dLLM-Cache,
future research will extend this framework to in-
clude additional acceleration strategies, such as
post-training quantization and step-adaptive early
stopping, as well as the remaining diagnostic (coun-
terfactual perturbation). These forthcoming analy-
ses will enable a more comprehensive characteri-
zation of how different train-free accelerations in-
fluence the causal coherence of diffusion-based
reasoning.

4 Experimental Details

Our primary model is LLaDA-8B, a discrete
diffusion-based large language model trained for
general text and reasoning tasks (Nie et al., 2025).
We use the official implementation and pretrained
checkpoints, interpreting the denoising trajectory
as a Diffusion Chain-of-Thought (DoT). Unless
otherwise specified, we adopt the default linear
noise schedule with 7' = 64 reverse steps. All
model weights remain frozen; only inference-time
procedures are modified.

We conduct experiments on the GSM8K math
word problem dataset (Cobbe et al., 2021), which
contains 7.5k training and 1.3k test examples.
We follow the LM-evaluation harness and of-
ficial LLaDA/dLLM-Cache setups, formatting
each example as a question followed by an “An-
swer:” prompt. For diffusion inference, we
adopt the GSM8K prompt templates and decoding
scripts provided in the dLLM-Cache repository for
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Figure 4: Speed-faithfulness tradeoff for dLLM-Cache. The model achieves 1.78x speedup while preserving most
faithfulness metrics, suggesting caching maintains the causal structure of reasoning.

LLaDA-8B. We reserve 1,000 randomly sampled
training instances as a validation set for hyperpa-
rameter selection and probe calibration. For evalua-
tion, we extract the final numeric answer as the last
integer or decimal in the model’s output and com-
pare it with the gold solution provided by GSMS8K;
examples with non-numeric answers (fewer than
1%) are excluded. Each sample is decoded for up to
512 tokens, with temperature values selected from
{0.0,0.5,1.0} based on validation performance.
All experiments are implemented in PyTorch 2.x
and run on NVIDIA A5000 GPUs under bf16 pre-
cision. We report mean and standard error across
three random seeds, measuring both exact-match
accuracy and average wall-clock time per example.

Baseline and Accelerated Model. We evaluate
the unmodified LLaDA-8B baseline alongside its
accelerated variant using dLLM-Cache (Liu et al.,
2025b). dLLM-Cache reuses intermediate repre-
sentations across diffusion steps to reduce redun-
dant computation. We adopt the authors’ default
adaptive block-level caching configuration and
record intermediate diffusion states for trajectory-
level analysis. For faithfulness evaluation, we ex-
tract mean-pooled hidden states from the final trans-
former layer at each timestep and train lightweight
linear probes: classification probes to predict cor-
rectness and regression probes to estimate numeric
outputs, trained using logistic and Ridge regres-
sion, respectively, with hyperparameters selected
via cross-validation.

Future Extensions. Although this study focuses
on LLaDA-8B and dLLM-Cache, our framework
generalizes to other acceleration methods. Future
work will include post-training quantization (Xu
and Yang, 2025), applying weight-only 4-bit quan-

tization with calibration on GSM8K examples, and
a step-adaptive early exit scheme (Li et al., 2025),
which halts diffusion once answer stability and con-
fidence thresholds are met. We also plan to extend
our faithfulness diagnostics to include counterfac-
tual perturbations, providing a more comprehensive
characterization of how inference-time acceleration
impacts diffusion-based reasoning.

5 Results

We analyze the faithfulness of DoT reasoning using
the LLaDA-8B diffusion language model and its
accelerated variant, dLLM-Cache, on the GSM8K
mathematical reasoning benchmark. Our evalua-
tion addresses two main questions: (1) to what
extent intermediate diffusion states encode infor-
mation about final answers, and (2) how inference-
time acceleration affects this encoding. We focus
on linear probe analyses that quantify the emer-
gence and persistence of answer-relevant informa-
tion across diffusion steps, providing an initial
assessment of how caching influences the causal
structure of diffusion-based reasoning.

Model Performance and Efficiency Table 1
summarizes task accuracy and inference latency
for the baseline LLaDA-8B and the cached vari-
ant. As expected, dLLM-Cache provides a sub-
stantial speedup with a minor accuracy reduction
(39.7% — 36.8%). These results, consistent with
prior findings (Liu et al., 2025b), frame our analysis
of whether such acceleration preserves the causal
relationship between intermediate reasoning states
and final answers.

Classification Probes We evaluate whether inter-
mediate diffusion states encode final-answer cor-
rectness via linear probes at each diffusion step
(Figure 2). Accuracy above chance indicates that
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Figure 5: The L2 distance to the final predicted answer,
showing the convergence of hidden states toward the
final representation over diffusion steps.

hidden states contain information predictive of the
final answer even before final answer convergence.

Classification accuracy rises steadily across dif-
fusion steps, peaking at 83.5% for the baseline and
76.0% for dLLM-Cache at the final step. Aver-
aged over all steps, caching reduces accuracy by
about 1.6 points, indicating modest but consistent
degradation in correctness encoding.

Even early diffusion steps (0-31) show above-
chance classification accuracy: 63.9% for the base-
line and 64.2% for dLLM-Cache. This indicates
that “correctness” information emerges well before
the final answer is decoded. Later steps accuracy
improves to 73.0% (baseline) and 69.5% (cached),
consistent with the accumulation of reasoning ev-
idence during denoising. The smaller early—late
gap under caching (5.3 vs. 9.1 points) suggests a
compressed information timeline, with correctness
signals distributed more uniformly across diffusion
time.

Regression Probes We next test whether inter-
mediate states encode numeric answer values using
regression probes, summarized by R? and RMSE
in Table 2. Both models exhibit negative R? scores
across all steps, confirming that linear regression
cannot recover numeric answers from hidden states.
This is expected given the complexity of map-
ping high-dimensional representations to precise
numeric values, and is consistent with findings in
prior work (Paul et al., 2024).

The baseline R? peaks early (-16.7 at step 1) and
declines thereafter (mean -45.3), indicating that nu-
meric information becomes less linearly separable
over time. dLLM-Cache yields slightly higher R?
(mean -38.2) but remains strongly negative, sug-
gesting that this minor improvement reflects task
difficulty rather than greater faithfulness.

Impact of Acceleration on Faithfulness To
quantify how caching affects the relationship be-
tween intermediate states and final answers, we
compare probe performance between baseline and
cached models. Figure 3 shows the difference in
R? scores across steps. While both models show
negative R? throughout, dLLM-Cache consistently
achieves slightly better (less negative) R? scores,
particularly in early steps. However, this pattern
reverses for classification accuracy, where the base-
line outperforms dLLM-Cache at nearly every step.

The divergence between classification and re-
gression probe results suggests that caching affects
different aspects of the hidden state representa-
tion. Classification probes, which measure whether
correctness information is encoded, show degra-
dation under caching. Regression probes, which
measure numeric precision, show slight improve-
ment, though both remain far from successful pre-
diction. This indicates that caching may preserve
coarse-grained answer information while altering
fine-grained correctness signals.

Trajectory Analysis We further analyze the dif-
fusion trajectories themselves to understand how
reasoning unfolds. Figure 1 shows 2D PCA projec-
tions of hidden state trajectories, colored by final
answer correctness. Correct and incorrect trajec-
tories show some separation in the latent space,
particularly in later diffusion steps, supporting the
classification probe findings that correctness infor-
mation accumulates over time.

Distance-to-final analysis (Figure ??) reveals
that hidden states converge toward the final repre-
sentation as diffusion progresses, with convergence
accelerating in later steps. This pattern is consis-
tent across both models, suggesting that caching
preserves the overall trajectory structure despite in-
troducing some degradation in probe performance.

Feature Divergence Between Models To di-
rectly measure how caching alters hidden state
representations, we compute L2 distance and co-
sine similarity between baseline and cached model
states at each diffusion step (Figure 6). States di-
verge gradually over the diffusion process, with
cosine similarity dropping from near 1.0 at step
0 to approximately 0.85-0.90 by step 63. This di-
vergence is consistent with the probe performance
differences observed, suggesting that caching intro-
duces systematic changes to the hidden state space
that affect faithfulness metrics.
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Figure 6: Hidden state divergence between baseline and cached models. Cosine similarity decreases over diffusion
steps, indicating that caching introduces systematic changes to representations.

Speed-Faithfulness Tradeoff Figure 4 visual-
izes the efficiency-faithfulness tradeoff achieved by
dLLM-Cache. The cached model achieves 1.78x
speedup while maintaining 92.7% of baseline ac-
curacy and 97.6% of baseline classification probe
performance (mean accuracy). This suggests that
caching provides a favorable tradeoff, preserving
most of the faithfulness signal while substantially
reducing inference time. The modest degradation
in probe performance (1.6-7.5 percentage points)
indicates that the causal relationship between in-
termediate states and final answers is largely pre-
served under acceleration.

Summary Our results reveal several key findings
on DoT faithfulness and the impact of acceleration:
1. Early information emergence: Classification
probes show above-chance accuracy in early steps,
indicating that correctness information emerges
early in the diffusion process.
2. Accumulation over time: Classification and
trajectory analyses show that information accumu-
lates during diffusion, peaking at the final step.
3. Caching preserves structure: Caching mod-
estly reduces probe accuracy but preserves overall
trajectory patterns and reasoning structure.
4. Regression limitations: Regression probes fail
to predict numeric answers, indicating numeric val-
ues are not linearly encoded in hidden space.
5. Efficiency-faithfulness tradeoff: Caching pro-
vides a favorable efficiency—faithfulness tradeoff,
maintaining most reasoning fidelity while accel-
erating inference, marking it a benign method for
faster diffusion inference.

These findings suggest that DoTs encode mean-
ingful reasoning structure and acceleration methods
like caching preserve this structure with acceptable

degradation. However, the linear probe methodol-
ogy reveals limitations in numeric prediction, in-
dicating that faithfulness may be better measured
through correctness prediction rather than precise
value estimation. Future evaluations should move
beyond linear probes, such as our proposed coun-
terfactual perturbations, to capture richer forms of
causal faithfulness.

6 Conclusion

This work presented an empirical analysis of
faithfulness in diffusion-based reasoning using
LLaDA-8B and its accelerated variant, dLLM-
Cache. Through trajectory-level probing, we exam-
ined how information about final answers emerges
over diffusion steps and found that correctness sig-
nals appear early, strengthen over time, and re-
main largely preserved under caching despite minor
degradation.

While our study provides an initial view of how
acceleration affects reasoning dynamics, it is lim-
ited in scope. We focused on a single acceleration
method and employed linear probes as a first-step
diagnostic rather than a full causal analysis. Future
iterations will incorporate counterfactual perturba-
tion tests and additional acceleration techniques to
broaden the evaluation and refine our understand-
ing of causal faithfulness in diffusion models.

Future work will extend this framework in order
to deepen empirical understanding of how train-
free acceleration methods influence the internal
reasoning structure of diffusion language models.
By expanding both methodological coverage and
diagnostic rigor, we aim to establish a clearer pic-
ture of the trade-offs between computational effi-
ciency and the preservation of faithful reasoning
trajectories.
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